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Chaotic space-time evolution is investigated for the particle number density of a Bose-Einstein condensate
with attractive interatomic interaction loaded into a traveling optical lattice. Melnikov chaos is studied and the
weakly chaotic regime is presented analytically. Transitions from transient to stationary chaos in the space-time
evolution are illustrated numerically. The results show that, on increasing the strength of the optical potential,
the transient chaos falls onto several different attractors. Meanwhile, these attractors undergo a series of
period-doubling bifurcations when the optical potential intensity is increased continuously, and eventually
stationary chaos arises for a critical depth of the optical lattice. The obstructions to chaos caused by the
damping and the motion of lattice are also demonstrated.
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I. INTRODUCTION

Periodic optical lattices, formed by the interference of two
or more laser beams, have been extensively used in atomic
physics[1–3]. The combination of the optical lattices with a
Bose-Einstein condensate(BEC) in recent experiments
opened up many new research aspects[4–12] and provided a
practically useful method to precisely manipulate BECs[13].
Correlated subjects include the observation of quantum
phase effects[4,14], superfluidity [15,16], atomic number
squeezing[9,17], matter-wave transport[8], quantum com-
putation and quantum information[18,19], detection of peri-
odic structure[20], phase transitions from superfluids to
Mott insulators[5,21,22], and so on. By using a periodic
laser standing wave, an array of Josephson junctions is cre-
ated with the condensates trapped in the valleys of the peri-
odic potential[12]. In the tight binding approximation(i.e.,
the many-mode approximation) or two-mode approximation
(a simpler case of the former) [23], many characteristics, for
instance, Josephson oscillating atomic currents[12] and
chaos[24–27], are revealed. In addition to extensive inves-
tigations in static lattices, moving optical lattices have also
been studied recently. For example, Ruprechtet al. [28] and
Ohberg and Stenholm[29] early applied a traveling lattice to
drive the BEC system. Denschlaget al. loaded the BEC into
a traveling lattice to study the physical properties in a recent
experiment[30]. Fallaniet al. reported the lensing effect on
a BEC expanding in a moving one-dimensional(1D) optical
lattice, i.e., the optical lattice acts as a lens for the matter
wave, focusing or defocusing the atomic cloud along the
direction of the lattice[31].

It is well known that in the process of BEC collapse
[32,33], chaos will emerge. Chaos may play a destructive
role for the system. Therefore, predicting and controlling
chaos are quite important in the formation and applications
of BECs. For the system considered, chaos has also attracted

extensive interest. In many previous works[24–27], the cha-
otic features in this system have been studied in the frame-
work of the many-mode approximation[12] (characteriza-
tion of the lattice system), or its simplified form, the two-
mode approximation(description of a double-well or two-
state system) [23]. In this scheme, integration over the spatial
coordinates is performed, so only the time evolutional prop-
erties are presented, and the spatial behaviors of the system
are unclear. In order to research the space-time chaos in such
a system, we shall start the investigation from the time-
dependent Gross-Pitaevskii(GP) equation, which governs
the dynamics of the BEC system in mean-field theory[34].
We consider a damped BEC loaded into a traveling optical
lattice. Under a deterministic perturbation, Melnikov chaos
[35] in the space-time evolution of the BEC is investigated
analytically for the case of an attractive atom-atom interac-
tion. A homoclinic chaotic regime is obtained and the sup-
pression effects of the damping and the propagation of the
optical lattice on the onset of chaos are discussed. The tran-
sient chaos due to the dissipative role of the damping
[24,36–38] is simulated numerically. For different intensities
of the optical potential, the evolutional trajectories of the
atomic number density fall onto different regular attractors
after the transient chaos. These final attractors undergo a se-
ries of period-doubling bifurcations with increase of the op-
tical intensity. When the optical intensity reaches a threshold
value, regularity of the attractor is destroyed and the tran-
sient chaos changes to stationary chaos.

II. ANALYSIS OF THE CHAOTIC DYNAMICS

The BEC system considered here is created in a harmoni-
cally trapped potential and then is loaded into a moving op-
tical lattice. The 3D combined potential therefore is given by
Vsx,y,z,td=V0 cos2skjd+msvx

2x2+vy
2y2+vz

2z2d /2, where the
second term is the harmonically magnetic potential withm
being the atomic mass andvx,vy,vz the trap frequencies.
The periodic potential is a moving optical lattice[30] with
the space-time variablej=x+dt /2k, where d is the fre-
quency difference between the two counterpropagating laser
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beams andk the laser wave vector which fixes the velocity of
the traveling lattice asvL=d / s2kd. When the BEC is formed
in the region near the center of the magnetic trap, the mag-
netic potential is much weaker than the lattice one and can be
neglected. According to the experimental parameters of Ref.
[30], vx=Î2vy=2vz=2p327 Hz, k=2p /l , l=589 nm,
and m the mass of23Na, we find that in the region of
kÎx2+y2/2+z2/4ø100p the harmonic potential is of the or-
der of 10−2 Er, which is much less than the lattice potential
V0=14Er, whereEr ="2k2/ s2md is the recoil energy. There-
fore, the 1D optical potential plays the main role for the
system and the quasi-1D approximation is valid in this re-
gion. On the other hand, for a time-dependent lattice, the
damping effect should be considered. The damping effect
caused by the incoherent exchange of normal atoms and the
finite temperature effect[39–41] has been analyzed in detail
for the two-junction linking of two BECs[39]. For the sys-
tem considered here, it is similar to the case of the linear
junction linking of many BECs. Thus, a damping effect
caused by similar elements or other factors may also exist.
With these considerations, the system is governed by the
following quasi-1D GP equation[42]:

i"s1 − igd
] c

] t
= −

"2

2m

]2c

] x2 + g0ucu2c + V0 cos2skjdc, s1d

where c is the macroscopic quantum wave function,g0
=4p"2a/m characterizes the interatomic interaction strength
with a being thes-wave scattering length,a.0 denotes a
repulsive interaction anda,0 corresponds to an attractive
interaction, and the term proportional tog represents the
damping effect which was used in Ref.[42].

Due to the complexity of Eq.(1), we focus our interest on
only the traveling wave solution of this equation and write it
in the form

c = wsjdexpfisax + btdg, s2d

such that the matter wave is a Bloch-like wave. Here,a and
b are two undetermined real constants. According to the
definition of the space-time variablej=x+vLt in the former,
the traveling wavewsjd moves with the same velocity as the
optical lattice. Inserting Eq.(2) into Eq. (1), we can easily
turn the partial differential equation(1) into an ordinary dif-
ferential one:

"2

2m

d2w

dj2 + iS"2a

m
+ "vL − i"gvLDdw

dj

− S"b +
"2a2

2m
− i"bgDw − g0uwu2w = V0 cos2skjdw.

s3d

For simplicity, using the dimensionless variables and param-
eters

z = kj, v = 2mvL/"k, b̃ = "b/Er ,

ã = a/k, Ṽ0 = V0/Er , s4d

we have Eq.(3) in the form

d2w

dz2 + isv + 2ãd
dw

dz
+ gv

dw

dz
− sb̃ + ã2dw + igb̃w − guwu2w

= Ṽ0 cos2szdw s5d

with the dimensionless strengthg=8pak and the functionw
being normalized byk1/2. Writing the complex functionw in
the form of w=Rszdeiuszd and entering it in the above equa-
tion, we obtain two coupled equations between the real func-
tions R andu as

d2R

dz2 − RSdu

dz
D2

− sv + 2ãdR
du

dz
+ gv

dR

dz
− sb̃ + ã2dR− gR3

= Ṽ0 cos2szdR, s6d

2
dR

dz

du

dz
+ R

d2u

dz2 + sv + 2ãd
dR

dz
+ gvR

du

dz
+ gb̃R= 0. s7d

Clearly, the square of the amplitudeR is just the particle
number density becauseuRu= uwu= ucu, andu is the phase ofw.
It is not difficult to observe that when the phase has a linear

relation with the space-time variable, i.e.,du /dz=−b̃ /v
=−sv /2+ãd, Eq.(7) can be naturally satisfied. Consequently,
Eq. (6) is changed to

d2R

dz2 −
1

4
v2R− gR3 = Ṽ0 cos2szdR− gv

dR

dz
. s8d

Obviously, the particularly linear relation betweenu andz
taken here leads to the coefficient of theR term on the left
hand side of Eq.(8) having a fixed negative sign. According
to the general theory of the Duffing equation, underlying Eq.
(10) has a homoclinic solution only when the coefficients of
the linearsRd and nonlinearsR3d terms on the left hand side
of Eq. (8) have opposite signs[43]. Therefore, in order to
study the homoclinic chaos for the negativeR term we must
consider the case of attractive atom-atom interactions, i.e.,
g,0; then the above equation is just the parametrically
driven Duffing equation with a damping term[43,44]. The
chaotic features of the Duffing system have been extensively
researched[45,46]. If the phaseu does not take a special
linear relation withz, the dynamical behaviors of the system
can be investigated from the coupled equations(6) and (7)
directly both for repulsive and attractive condensates, and the
chaotic behavior becomes more complex; this will not be
discussed here.

For the case of a weak optical lattice potential and damp-
ing, a perturbational treatment is permitted. It is well known
that the Melnikov-function method[35,44] is a valid analyti-
cal one under the first order approximation. Making the per-
turbational expansion

Rszd = R0szd + R1szd, uR1u ! uR0u, s9d

and inserting it into Eq.(8), we obtain the leading and first
order equations as

d2R0

dz2 −
1

4
v2R0 − gR0

3 = 0, s10d
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d2R1szd
dz

−
1

4
v2R1szd − 3gR0

2szdR1szd

= Ṽ0 cos2szdR1szd − gv
dR1szd

dz
. s11d

Starting from Eq.(10), the leading order equation has the
homoclinic solution

R0szd =
v

Î− 2g
sechSv

2
sz + z0dD , s12d

wherez0 is an integration constant. Obviously, under weak
perturbations the leading order solution of the number den-
sity is just a bright soliton solution, which implies that the
wave packet of the matter wave is localized in the space at
any time. Therefore, following the standard Melnikov ap-
proach, the Melnikov function for this homoclinic orbit is
given by

M±sz0d =E
−`

` dR0

dz
SṼ0 cos2szdR0 − gv

dR0

dz
Ddz

= −
gv4

6g
−

2pṼ0

g
cschS2p

v
Dsins2z0d, s13d

which measures the distance between the stable and unstable
manifolds in the Poincaré section. If it has a simple zero,
then a homoclinic bifurcation occurs, which signifies the on-
set of Smale-horseshoe chaotic behavior[44]. Taking note of
Eq. (4), the Melnikov function(13) vanishing leads to the
homoclinic chaotic region

V0

Er,0
ù

16gm4vL
4

3p"4k0
2k2sinhSp"k

mvL
D , s14d

in which Eq. (4) has been adopted. In Eq.(14), we express
the optical intensity as a function of the wave vectork and
the moving velocityvL of the optical lattice. Sincek is in-
volved in the recoil energyEr, which is used as the unit of
optical strength in the definition of Eq.(4), in order to see
clearly the dependence of the optical intensity on the wave
vector k, we introduce another energy scale ofEr,0
="2k0

2/ s2md for a fixed optical wavelengthl0=2p /k0

=589 nm just as in Eq.(14). The criterion(14) is usually
considered as a necessary condition for the onset of chaos.
For a set of fixed parameters Eq.(14) gives the threshold
value of the optical potential. The system undergoes a pro-
cession from regular motion to chaotic motion when the
strength of the optical potential is increased across the
threshold value.

In order to see clearly the dependence of the chaotic re-
gions on the system parameters, starting from Eq.(14), we
plot the optical intensityV0 versus the laser wave vectork in
Fig. 1(a) and plotV0 versus the traveling velocityvL in Fig.
1(b). Here, the parameters are taken asg=0.005,m=23mp
with mp the proton mass, andl0=589 nm; meanwhile, in
Fig. 1(a) vL=3 cm/s andV0 and k are in units ofEr,0 and
k0=2p /l0, respectively, and in Fig. 1(b) k=k0, V0 andvL are
in units of Er,0 andvL,0=3 cm/s(a particular velocity scale
selected arbitrarily). In Fig. 1, the areas above the curves

correspond to Melnikov chaotic regions in which the evolu-
tion of the atomic number density has the properties of
Smale-horseshoe chaos; those below denote regions of regu-
lar motion. From Fig. 1(a) we observe that for very weak
dampingg=0.005, the threshold value of the laser intensity
is approximately obtained asV0=0.02 for k=0.5 (in unit of
k0). This implies that for weak damping and optical lattice
potential the criterion(14) can indeed be satisfied. If the
damping is increased to about 0.1, from Eq.(14), the critical
value becomesV0=0.4 for k=0.5. In this case, the optical
strength becomes comparable to the interatomic interaction
due to g=8pka=−0.375 with s-wave scattering lengtha
=−2.8 nm. Therefore, the optical potential cannot be treated
as a perturbation now. On the other hand, from Fig. 1(b) we
find that aftervL.1 a largervL value is associated with a
larger threshold value ofV0. This implies a suppression of
chaos, namely, in the regionvL.1, a given V0 value is
greater than the chaos threshold for a smallervL value, but it
is less than the chaos threshold whenvL is increased to a
certain value. Due to the experimental controllability of the
lattice velocity, this suppressive effect suggested to us a valid
approach to controlling the chaos in experiments. Moreover,
to guarantee the validity of the weakly chaotic region(14),
the traveling velocity of the lattice must be slow, because
when the velocity is large enough the second term on the
right hand of Eq.(8) may become very large and so the
perturbational treatment becomes invalid. Meanwhile, from
Eq. (14) we can see that the threshold value is proportional
to the strength of the damping; when the damping is very
weak, the criticalV0 value is small, but a strong damping
will lead to a higher criticalV0. In other words, for a certain

FIG. 1. Plots of the chaotic regions in parameter space of(a) the
optical intensityV0 versus the laser wave vectork and(b) V0 versus
the propagating velocity of the optical lattice from Eq.(14). Here
the other system parameters are taken asg=0.005,m=23mp,k0

=2p /l0=2p /589 nm, vL,0=3 cm/s, andV0,k,vL are in units of
Er,0,k0,vL,0, respectively.
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depth of lattice, enhancement of the damping will decrease
the chaotic region; so the damping has a suppressive effect
on chaos too. However, when the damping is strong enough,
the Melnikov method becomes invalid; then a numerical
analysis for the system is needed.

III. NUMERICAL ILLUSTRATION OF THE TRANSITION
FROM TRANSIENT TO STATIONARY CHAOS

Because of the damping effects, the dissipative system
considered has the important consequence that the phase-
space volume will contract with the evolution of the space-
time variable. In the process of evolution, there exists the

general feature that the evolution of the system seems to be
chaotic during some transient periods and ultimately tends to
some periodical stable attractors. This phenomenon is called
transient chaos[36]. Transient chaos will appear for arbitrary
initial conditions before it goes into the final attractors. We
shall illustrate transient chaos in the numerical simulation by
exhibiting the process of attraction from transient chaos to
regular and stationary chaotic attractors.

We adopt Denschlag’s experimental parameters, wherem
equates to 23mp with mp being the proton mass, the laser
wavelength isl=l0=589 nm, and the traveling velocity of
the optical lattice readsvL=3 cm/s such thatv=2mvL /"k0
=2.03 andg=8pk0a=−0.75. Furthermore, a damping value

FIG. 2. Plots of the phase orbits in the equivalent phase space ofsR,dR/dzd from Eq.(8). The left column shows the transient chaos and
the right column illustrates the corresponding regular attractors and the stationary chaotic attractor(h).
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g=0.05 is set. UsingMATHEMATICA we solve Eq.(8) numeri-
cally under the initial conditionsRs0d=0.01, dRs0d /dz=0,
and illustrate the transient and final attractors in the equiva-
lent phase space ofsR,dR/dzd by Fig. 2 for (a) and(b) with

Ṽ0=1.85, (c) and (d) with Ṽ0=1.9, (e) and (f) with Ṽ0

=1.975, and(g) and(h) with Ṽ0=2. The attracting procession
from transient chaos to the corresponding final state takes
aboutt8=0.06 s forx=0, that is,zx=0=kvLt8<2000, and any
transient state is plotted fromz=0 toz=100. The left column
describes the transient chaotic attractors and the right column
denotes the final regular attractors and a stationary chaotic
state(h).

In Fig. 2 we show that transient chaotic attractors are

formed fromz=0 to z=100. For different value ofṼ0, the
chaotic attractor is changed into different regular attractors
with the increase of the space-time coordinate fromz=100 to

z=2000. WhenṼ0=1.85 is taken, Fig. 2(b) shows the final
attractor as a closed single-period orbit. As the optical inten-

sities are increased toṼ0=1.9 andṼ0=1.975, the final phase
orbits become the double-period and four-period orbits as in

Figs. 2(d) and 2(f). When the laser strength reachesṼ0=2 by
carefully adjusting our numerical simulations, the phase tra-
jectories fall from the transient chaotic state as in Fig. 2(g)
onto the stationary chaotic attractor Fig. 2(h). These proces-
sions imply that the transition from transient chaos to station-
ary chaos may undergo a series of bifurcations.

In order to illustrate clearly the bifurcation sequence of
the final attractors, we give a bifurcation plot for the value of

RsTd versusṼ0 as in Fig. 3, by using the same system pa-
rameters as in Fig. 2 and a different dampingg=0.25. Here,
RsTd is the value atz=T=np with n being an integral num-
ber. In order to avoid transient chaos, the values ofRsTd in
the initial 500 periods of the driven potentialVszd are elimi-
nated.

From Fig. 3 we can see that for smallṼ0 the evolutional
behavior of the system converges to a period-1 solution.
With increase of the optical intensity the first bifurcation

appears at aboutṼ0=2.82, and the second bifurcation at

aboutṼ0=2.92. As expected, the transition between transient
chaos and stationary chaos indeed comes through a period-
doubling bifurcation. Comparing Fig. 2 with Fig. 3, we find

that for a larger damping 0.25 in Fig. 3 the critical optical

strengthṼ0 for the stationary chaos also becomes stronger.
For the sake of seeking the effect of damping on the onset

of chaos in this system, we plot the bifurcation graphic of
RsTd versus the dampingg as in Fig. 4, where the system
parameters are the same as in Fig. 2 and the optical potential

strength is taken as a determined numberṼ0=1.8. From Fig.
4 we can see that for much weaker damping the values of
RsTd are random and the motion of the system is stationary
chaotic. When the damping becomes stronger, the values of
RsTd convergence to two values and the motion of the sys-
tem becomes regular. Thereby, the damping plays a baffling
role in obstructing the system coming into stationary chaos.
This result is in agreement with the theoretical analysis in the
above-mentioned Melnikov method.

Going back over the above theoretical analysis and nu-
merical simulation, the evolution of the matter wave is gov-
erned by a Bloch-like wave in Eq.(2), which is traveling
with the same velocity as the optical lattice. Therefore, the
random motions in the deterministic system demonstrate to
us a time-space chaos. This chaotic state propagates in the
direction of motion of the optical lattice.

IV. CONCLUSION

In summary, we have considered a BEC system loaded
into a moving lattice and studied the space-time chaotic dy-
namics of the system. When the optical lattice potential and
the damping are very weak, using the Melnikov function to
predict the onset of chaos is a valid analytical technique. In
the perturbational parameter region, the Melnikov chaos near
the homoclinic solution was investigated for the evolution of
the atomic number density, and the weak chaotic regime was
presented consequently. A chaos suppression effect caused
by the propagation of the optical lattice was revealed, which
suggests a possible method for controlling chaos in experi-
ments. When the intensity of the optical lattice potential and
the damping are strong enough, the Melnikov method be-
comes invalid, which necessitates a numerical approach. A
chaotic transient, which is a common phenomenon in dissi-
pative systems, has been illustrated numerically. The transi-
tion from the transient to stationary chaos was embodied in
the variety of the final attractors. The route from transient

FIG. 3. A plot of the bifurcation diagram withRsTd vs Ṽ0. At

aboutṼ0=2.95, the system enters a stationary chaotic state. Here,

Ṽ0 is in units of the recoil energyEr,0.

FIG. 4. A plot of the bifurcation diagram ofRsTd vs g. The
chaos suppression effect caused by damping is illustrated. With an
increase of the damping, the system changes from chaotic to regular
motion.
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chaos to a stationary chaotic state of the system was simu-
lated numerically and period-doubling bifurcations were
demonstrated when the strength of the lattice potential was
increased continuously. Meanwhile, the restraining effects on
the onset of chaos caused by the damping were also investi-
gated.

In the recent advancements in applications of BECs,
quantum computation with BEC atoms in Mott insulating
states is an interesting subject[18]. However, chaos is asso-

ciated with quantum entanglement[47] and quantum error
correcting[48], which are all key subjects in quantum com-
putation; thereby, investigating and controlling the chaos in
BECs is very important.
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